Name:_	Date:	

34. S An object of mass m_1 hangs from a string that passes over a very light fixed pulley P_1 as shown in Figure P5.34. The string connects to a second very light pulley P_2 . A second string passes around this pulley with one end attached to a wall and the other to an object of mass m_2 on a frictionless, horizontal table. (a) If a_1 and a_2 are the accelerations of m_1 and m_2 , respectively, what is the relation between these accelerations? Find expressions for (b) the tensions in the strings and (c) the accelerations a_1 and a_2 in terms of the masses m_1 and m_2 , and g.

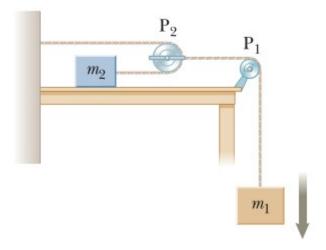


Figure P5.34

Name:	Date:	

35. M In Example 5.8, we investigated the apparent weight of a fish in an elevator. Now consider a 72.0-kg man standing on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.20 m/s in 0.800 s. It travels with this constant speed for the next 5.00 s. The elevator then undergoes a uniform acceleration in the negative y direction for 1.50 s and comes to rest. What does the spring scale register (a) before the elevator starts to move, (b) during the first 0.800 s, (c) while the elevator is traveling at constant speed, and (d) during the time interval it is slowing down?