Name:	Date:	
Name:	T	

2. A curve in a road forms part of a horizontal circle. As a car goes around it at constant speed 14.0 m/s, the total horizontal force on the driver has magnitude 130 N. What is the total horizontal force on the driver if the speed on the same curve is 18.0 m/s instead?

Name:	Date:
-------	-------

4. Whenever two *Apollo* astronauts were on the surface of the Moon, a third astronaut orbited the Moon. Assume the orbit to be circular and 100 km above the surface of the Moon, where the acceleration due to gravity is 1.52 m/s². The radius of the Moon is 1.70 × 10⁶ m. Determine (a) the astronaut's orbital speed and (b) the period of the orbit.

Name:	Date:
-------	-------

7. A space station, in the form of a wheel 120 m in diameter, rotates to provide an "artificial gravity" of 3.00 m/s² for persons who walk around on the inner wall of the outer rim. Find the rate of the wheel's rotation in revolutions per minute that will produce this effect.

Name:	Date:	

8. Consider a conical pendulum (Fig. P6.8) with a bob of mass m = 80.0 kg on a string of length L = 10.0 m that makes an angle of $\theta = 5.00^{\circ}$ with the vertical. Determine (a) the horizontal and vertical components of the force exerted by the string on the pendulum and (b) the radial acceleration of the bob.

Figure P6.8

Name:_	Date:	

11. A coin placed 30.0 cm from the center of a rotating, horizontal turntable slips when its speed is 50.0 cm/s. (a) What force causes the centripetal acceleration when the coin is stationary relative to the turntable? (b) What is the coefficient of static friction between coin and turntable?