Name:	Date:	

13. A velocity-time graph for an object moving along the x axis is shown in Figure P2.13. (a) Plot a graph of the acceleration versus time. Determine the average acceleration of the object (b) in the time interval t = 5.00 s to t = 15.0 s and (c) in the time interval t = 0 to t = 20.0 s.

Figure P2.13

Name:	Date:

17. A particle moves along the x axis according to the equation $x = 2.00 + 3.00t - 1.00t^2$ where wis in maters or

 $1.00t^2$, where x is in meters and t is in seconds. At t = 3.00 s, find (a) the position of the particle, (b) its velocity, and (c) its acceleration.

Name:	Date:

23. M An object moving with uniform acceleration has a velocity of 12.0 cm/s in the positive *x* direction when its *x* coordinate is 3.00 cm. If its *x* coordinate 2.00 s later is -5.00 cm, what is its acceleration?

Name:	Date:
-------	-------

29. The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with an acceleration of -5.60 m/s² for 4.20 s, making straight skid marks 62.4 m long, all the way to the tree. With what speed does the car then strike the tree?

Name:	Date:

30. S In the particle under constant acceleration model, we identify the variables and parameters v_{xi} , v_{xf} , a_x , t, and $x_f - x_i$. Of the equations in Table 2.2, the first does not involve $x_f - x_i$, the second does not contain a_x , the third omits v_{xf} , and the last leaves out t. So, to complete the set, there should be an equation *not* involving v_{xi} . (a) Derive it from the others. (b) Use the equation in part (a) to solve Problem 29 in one step.