\qquad

Gravitational Simple Harmonic Motion

Last class we developed the following equation describing the acceleration of a person falling through the earth:

$$
a=-\left(\frac{G M_{E}}{R_{E}}\right) r
$$

where G is the Universal Gravitational Constant, M_{E} is the mass of the earth, R_{E} is the radius of the earth, and r is the person's distance from the earth's center. Using accepted values for G, M_{E}, and R_{E}, calculate, in minutes, the time it takes a person to fall from one side of the earth to the other through the center.
\qquad
7. A $1.00-\mathrm{kg}$ object is attached to a horizontal spring. The spring is initially stretched by 0.100 m , and the object is released from rest there. It proceeds to move without friction. The next time the speed of the object is zero is 0.500 s later. What is the maximum speed of the object?
\qquad
9. A 7.00-kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of 2.60 s . Find the force constant of the spring.
13. A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the origin, at $t=0$ and moves to the right. The amplitude of its motion is 2.00 cm , and the frequency is 1.50 Hz . (a) Find an expression for the position of the particle as a function of time. Determine (b) the maximum speed of the particle and (c) the earliest time $(t>0)$ at which the particle has this speed. Find (d) the maximum positive acceleration of the particle and (e) the earliest time $(t>0)$ at which the particle has this acceleration. (f) Find the total distance traveled by the particle between $t=0$ and $t=1.00 \mathrm{~s}$.

