Topics and Equations for
 AP Physics C: Mechanics

Edited by
C. Gregory
Manlius Pebble Hill School
Syracuse, NY

You are permitted use of a scientific calculator and the College Board's AP Physics equation sheet for the ENTIRE exam (see www.collegeboard.org/ap/calculators for a list of acceptable calculators). The reason for this is explained in the AP Physics Course Description:

The purpose of allowing calculators and equation sheets to be used in both sections of the exam is to place greater emphasis on the understanding and application of fundamental physical principles and concepts. For solving problems and writing essays, a sophisticated scientific or graphing calculator, or the availability of equations, is no substitute for a thorough grasp of the physics involved. The availability of these equations to all students means that in the scoring of the exam, little or no credit will be awarded for simply writing down equations or for answers unsupported by explanations or logical development.

The AP Physics equation sheet provides a list of fundamental equations from which all others may be derived. The following list, adapted from Tipler \& Mosca's Physics for Scientists and Engineers, Fourth Edition, describes the topics and all of the equations with which you should be familiar before you take the AP Physics C: Mechanics Exam. The fundamental equations provided by the College Board are indicated with an asterisk * on the following pages.

CONTENTS

Measurement Page 3
Motion in One Dimension. Page 5
Motion in Two Dimensions Page 7
Newton's Laws Page 10
Applications of Newton's Laws Page 12
Work and Kinetic Energy Page 15
Conservation of Energy Page 17
Conservation of Linear Momentum Page 19
Rotation Page 20
Angular Momentum Page 23
Static Equilibrium. Page 25
Gravitation Page 26
Oscillations. Page 29

MEASUREMENT

TOPIC	RELEVANT EQUATIONS AND REMARKS
1. Units	Physical quantities are numbers that are obtained by taking measurements of physical objects. Operational definitions specify operations or procedures that, if followed, define physical quantities. The magnitude of a physical quantity is expressed as a number times a unit.
2. Base Units	The base units in the SI system are the meter (m), the second (s), the kilogram (kg), the kelvin (K), the ampere (A), the mole (mol), and the candela (cd). The unit(s) of every physical quantity can be expressed in terms of these base units.
3. Units in Equations	Units in equations are treated just like any other algebraic quantity.
4. Conversions	Conversion factors, which are always equal to 1 , provide a convenient method for converting from one kind of unit to another.
5. Dimensions	The terms of an equation must have the same dimensions.
6. Scientific Notation	For convenience, very small and very large numbers are generally written as a number between 1 and 10 times a power of 10 .
7. Exponents	
Multiplication	When multiplying identical bases, the exponents are added.
Division	When dividing identical bases, the exponents are subtracted.
Raising to a power	When a number containing an exponent is itself raised to a power, the exponents are multiplied.

MEASUREMENT

TOPIC	RELEVANT EQUATIONS AND REMARKS
8. Significant Figures	
Multiplications and division	The number of significant figures in the result of multiplication or division is no greater than the least number of significant figures in any of the numbers.
Addition and subtraction	The result of addition or subtraction of two numbers has no significant figures beyond the last decimal place where both of the numbers being added or subtracted have significant figures.
A. Order of Magnitude	order of magnitude. The order of magnitude of a quantity
can often be estimated using plausible assumptions and	
simple calculations.	

Displacement, velocity, and acceleration are important defined kinematic quantities.

TOPIC

1. Displacement

Graphical interpretation

2. Velocity

Average velocity

$$
\begin{aligned}
& v_{x, \text { avg }} \equiv \frac{\Delta x}{\Delta t} \\
& v \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
\end{aligned}
$$

Instantaneous velocity

Graphical interpretation
The instantaneous velocity is the slope of the x versus t curve.

3. Speed

Average speed

Instantaneous speed

$$
\text { average speed } \equiv \frac{\text { total distance }}{\text { total time }}=\frac{s}{t}
$$

Instantaneous speed is the magnitude of the instantaneous velocity.

$$
\text { speed }=\left|v_{x}\right|
$$

4. Acceleration

Average acceleration

Instantaneous acceleration

Graphical interpretation

Acceleration due to gravity

$$
\begin{aligned}
& a_{x, \text { avg }} \equiv \frac{\Delta v_{x}}{\Delta t} \\
& a \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}}
\end{aligned}
$$

The instantaneous acceleration is the slope of the v_{x} versus t curve.

The acceleration of an object near the surface of Earth in free-fall under the influence of gravity alone is directed downward and has magnitude $g=9.91 \mathrm{~m} / \mathrm{s}^{2} \approx 10 \mathrm{~m} / \mathrm{s}^{2}$

MOTION IN ONE DIMENSION

TOPIC

RELEVANT EQUATIONS AND REMARKS

5. Kinematic equations for constant acceleration

*Velocity $\quad v_{x f}=v_{x i}+a_{x} t$
Average velocity $\quad v_{x, \text { avg }}=\frac{1}{2}\left(v_{x i}+v_{x f}\right)$
Displacement in terms of $v_{x, \text { avg }} \quad \Delta x=x_{f}-x_{i}=v_{x, a v g} t=\frac{1}{2}\left(v_{x i}+v_{x f}\right) t$

* Displacement as a function of time

$$
\Delta x=x_{f}-x_{i}=v_{x i} t+\frac{1}{2} a_{x} t^{2}
$$

$* v_{x}{ }^{2}$ as a function of Δx

$$
v_{x f}^{2}=v_{x i}^{2}+2 a_{x} \Delta x
$$

6. Displacement \& velocity as integrals

Displacement is represented graphically as the area under the v_{x} versus t curve. This area is the integral of v_{x} over time from some initial time t_{i} to some final time t_{f} and is written:

$$
\Delta x=\lim _{\Delta t \rightarrow 0} \sum v_{x} \Delta t=\int_{t_{i}}^{t_{f}} v_{x} d t
$$

Similarly, change in velocity is represented graphically as the area under the a_{x} versus t curve:

$$
\Delta v_{x}=\lim _{\Delta t \rightarrow 0} \sum a_{x} \Delta t=\int_{t_{i}}^{t_{f}} a_{x} d t
$$

TOPIC

1. Vectors

Definition	Vectors are quantities that have both magnitude and direction. Vectors add like displacements.
Components	The component of a vector in a direction in space is the projection of the vector on an axis in that direction. If $\overrightarrow{\boldsymbol{A}}$ makes an angle θ with the positive x direction, its x and y components are $A_{x}=A \cos \theta$ $A_{y}=A \sin \theta$
$\qquad$$A=\|\overrightarrow{\boldsymbol{A}}\|=\sqrt{A_{x}^{2}+A_{y}^{2}}$	
Magnitude	Two vectors may be added graphically by drawing them with the tail of the second arrow at the head of the first arrow. The arrow representing the resultant vector is
drawn from the tail of the first vector to the head of the	
second.	

TOPIC

2. Kinematic Vectors

Position vector
RELEVANT EQUATIONS AND REMARKS

2. Kinematic Vectors
Position vector
Instantaneous velocity vector

Instantaneous velocity vector
The velocity vector $\overrightarrow{\boldsymbol{v}}$ is the rate of change of the position vector. Its magnitude is the speed, and it points in the direction of motion.

$$
\overrightarrow{\mathbf{v}} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{r}}}{d t}
$$

Instantaneous acceleration vector
3. Relative Velocity

$$
\overrightarrow{\boldsymbol{a}} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\boldsymbol{v}}}{\Delta t}=\frac{d \overrightarrow{\boldsymbol{v}}}{d t}
$$

If a particle p moves with velocity $\vec{v}_{p A}$ relative to reference frame A, which is in turn moving with velocity
$\overrightarrow{\boldsymbol{v}}_{A B}$ relative to reference frame B, then the velocity of p relative to B is:

$$
\overrightarrow{\boldsymbol{v}}_{p B}=\vec{v}_{p A}+\vec{v}_{A B}
$$

4. Projectile Motion with No

Air Resistance
Independence of motion

The $+x$ direction is horizontal and the $+y$ direction is upward for the equations in this section.

In projectile motion, the horizontal and vertical motions are independent.

Acceleration	$a_{x}=0$ and $a_{y}=-g$
Dependence on time	$v_{x}=v_{x i}=v_{i} \cos \theta$
	$v_{y}=v_{i} \sin \theta-g t$
	$\Delta x=\left(v_{i} \cos \theta\right) t$
	$\Delta y=\left(v_{i} \sin \theta\right) t-\frac{1}{2} g t^{2}$

Alternatively, $\Delta \overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{g}} t$ and $\Delta \overrightarrow{\boldsymbol{r}}=\overrightarrow{\boldsymbol{v}}_{i} t+\frac{1}{2} \overrightarrow{\boldsymbol{g}} t^{2}$

MOTION IN TWO DIMENSIONS

TOPIC
RELEVANT EQUATIONS AND REMARKS

Peak projectile height

$$
\begin{aligned}
& H=\frac{\left(v_{i} \sin \theta\right)^{2}}{2 g} \\
& H_{\max }=\frac{v_{i}^{2}}{2 g} \text { when } \theta=90^{\circ} \\
& R=\frac{v_{i}^{2} \sin 2 \theta}{g} \\
& R_{\max }=\frac{v_{i}^{2}}{g} \text { when } \theta=45^{\circ}
\end{aligned}
$$

Horizontal projectile range

5. Circular Motion

* Centripetal acceleration

$$
a_{c}=\frac{v^{2}}{r}
$$

Tangential acceleration

$$
a_{t}=\frac{d v}{d t}
$$

Total acceleration $\quad a=\sqrt{\overline{a_{c}^{2}+a_{t}^{2}}}$
Period of motion

$$
T=\frac{\text { distance per revolution }}{\text { speed }}=\frac{2 \pi r}{v}
$$

TOPIC

RELEVANT EQUATIONS AND REMARKS

1. Newton's Laws	
First law	An object at rest stays at rest unless acted on by an external force. An object in motion continues to travel with constant velocity unless acted on by an external force. (Reference frames in which these statement hold are called inertial reference frames.)
*Second law	The acceleration of an object is directly proportional to the net force acting on it. The reciprocal of the mass of the object is the proportionality constant. Thus: $\overrightarrow{\boldsymbol{F}}_{\text {net }}=\sum \overrightarrow{\boldsymbol{F}}=m \boldsymbol{a}$
Third law	When two bodies interact, force $\overrightarrow{\boldsymbol{F}}_{B A}$ exerted by object B on object A is equal in magnitude and opposite in direction to force $\overrightarrow{\boldsymbol{F}}_{A B}$ exerted by object A on object B: $\overrightarrow{\boldsymbol{F}}_{B A}=-\overrightarrow{\boldsymbol{F}}_{A B}$
Our statements of Newton's first and second laws are	
2. Inertial Reference Frames	valid only in inertial reference frames. Any reference frame that is moving with constant velocity relative to an inertial reference frame is itself an inertial reference frame, and any reference frame that is accelerating relative to an inertial frame is not an inertial reference frame. Earth's surface is, to a good approximation, an inertial reference frame.

TOPIC
3. Force, Mass, and Weight

Force

Mass

RELEVANT EQUATIONS AND REMARKS

3. Force, Mass, and Weight	
Force	Force is defined in terms of the acceleration it produces on a given object. A force of 1 newton (N) is that force which produces an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ on a mass of 1 kg.
Mass	Mass is an intrinsic property of an object. It is the measure of the inertial resistance of the object to acceleration. Mass does not depend on the location of the object. Applying identical forces to each of two objects and measuring their
respective accelerations allows the masses of two objects	
to be compared. The ratio of the masses of the objects is	
defined to be equal to the inverse ratio of the accelerations	
produced:	
$\frac{m_{2}}{m_{1}} \equiv \frac{a_{1}}{a_{2}}$	

Gravitational force

The gravitational force $\overrightarrow{\boldsymbol{F}}_{g}$ on an object near the surface of Earth is the force of gravitational attraction exerted by Earth on the object. It is proportional to the gravitational field $\overrightarrow{\boldsymbol{g}}$ (which is equal to the free-fall acceleration), and the mass m of the object is the proportionality constant:

$$
\overrightarrow{\boldsymbol{F}}_{g}=m \overrightarrow{\boldsymbol{g}}
$$

The weight of an object is the magnitude of the gravitational force on the object.

APPLICATIONS OF NEWTON'S LAWS

TOPIC	RELEVANT EQUATIONS AND REMARKS
1. * Hooke's Law	When an unstressed spring is compressed or extended by a small displacement $\Delta \overrightarrow{\boldsymbol{X}}$, the restoring force it exerts is proportional to $\Delta \overrightarrow{\boldsymbol{x}}$: $\overrightarrow{\boldsymbol{F}}_{x}=-k \Delta \overrightarrow{\boldsymbol{x}}$
2. Friction	Two objects in contact exert frictional forces on each other. These forces are parallel to the contacting surfaces and directed so as to oppose sliding or tendency to slide.
3. Drag Forces	When an object moves through a fluid, it experiences a drag force that opposes its motion. The drag force increases with increasing speed. If the body is dropped from rest, its speed increases. As it does, the magnitude of the drag force comes closer and closer to the magnitude of the force of gravity, so the net force, and thus the acceleration, approaches zero. As the acceleration approaches zero, the speed approaches a constant value called its terminal speed. The terminal speed depends on both the shape of the body and on the medium through which it falls.

APPLICATIONS OF NEWTON'S LAWS

TOPIC

Drag proportional to velocity
RELEVANT EQUATIONS AND REMARKS

$$
\overrightarrow{\boldsymbol{F}}_{D}=-b \overrightarrow{\boldsymbol{v}}
$$

Where F_{D} is the drag force and b is a proportionality constant.

Differential equation for speed

$$
\frac{d v}{d t}=g-\frac{b}{m} v
$$

Terminal speed $\quad v_{t}=\frac{m g}{b}$
Speed as a function of time

$$
v=\frac{m g}{b}\left(1-e^{-b t / m}\right)=v_{t}\left(1-e^{-b t / m}\right)
$$

Acceleration as a function of time

$$
a=\frac{d v}{d t}=g e^{-b t / m}
$$

4. Motion Along a Curved Path

A particle moving along an arbitrary curve can be considered to be moving along a circular arc for a short time interval. Its instantaneous acceleration vector has a component $a_{\mathrm{c}}=v^{2} / r$ toward the center of curvature of the arc and a component $a_{\mathrm{t}}=d v / d t$ that is tangential to the arc. If the particle is moving along a circular path of radius r at constant speed $v, a_{\mathrm{t}}=0$ and the speed, radius, and period T are related by $2 \pi r=v T$.

Centripetal force	$F_{c}=m a_{c}=m \frac{v^{2}}{r}$
Speed around an unbanked curve	$v \leq \sqrt{\mu_{s} g r}$
Speed at the top of an inside loop	$v \geq \sqrt{g r}$

APPLICATIONS OF NEWTON'S LAWS

TOPIC

RELEVANT EQUATIONS AND REMARKS

5. Center of Mass

* Center of mass for a system

The center of mass of a system of particles is defined to be of particles the point whose coordinates are given by:

$$
\begin{aligned}
& x_{c m}=\frac{1}{M} \sum_{i=1}^{n} x_{i} \\
& y_{c m}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i} \\
& z_{c m}=\frac{1}{M} \sum_{i=1}^{n} z_{i}
\end{aligned}
$$

Center of mass for continuous objects

$$
\overrightarrow{\boldsymbol{r}}_{c m}=\frac{1}{M} \int \overrightarrow{\boldsymbol{r}} d m
$$

Position, velocity, and acceleration
for the center of mass of a system
of particles

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{r}}_{c m}=\frac{1}{M}\left(m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\cdots\right) \\
& \overrightarrow{\boldsymbol{v}}_{c m}=\frac{1}{M}\left(m_{1} \overrightarrow{\boldsymbol{v}}_{1}+m_{2} \overrightarrow{\boldsymbol{v}}_{2}+\cdots\right) \\
& \overrightarrow{\boldsymbol{a}}_{c m}=\frac{1}{M}\left(m_{1} \overrightarrow{\boldsymbol{a}}_{1}+m_{2} \overrightarrow{\boldsymbol{a}}_{2}+\cdots\right)
\end{aligned}
$$

Newton's second law for a system

$$
\sum \overrightarrow{\boldsymbol{F}}_{e x t}=m \overrightarrow{\boldsymbol{a}}_{c m}
$$

1. Work, kinetic energy, and power are important derived dynamic quantities.
2. The work - kinetic-energy theorem is an important relation derived from Newton's laws applied to a particle. (In this context, a particle is a perfectly rigid object that moves without rotating.)
3. The scalar product of vectors is a mathematical definition that is useful throughout physics.

TOPIC

RELEVANT EQUATIONS AND REMARKS

1. * Work

$$
W \equiv \int_{1}^{2} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{s}}
$$

Constant force	$W=\overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{s}}=F s \cos \theta$
Constant force - straight-line motion	$W=F_{x} \Delta x=F \Delta x \cos \theta$

Variable force - straight-line motion

$$
W=\int_{x_{i}}^{x_{f}} F_{x} d x=\text { Area under an } F_{x} \text { versus } x \text { curve }
$$

2. * Kinetic Energy

$$
K \equiv \frac{1}{2} m v^{2}
$$

3. Work - Kinetic-Energy Theorem
$W=\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)$
4. Scalar (Dot) Product
$\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}} \equiv A B \cos \theta$
In terms of components
$\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
Vector times unit vector

$$
\vec{A} \cdot \hat{i}=A_{x}
$$

Derivative product rule

$$
\frac{d}{d t}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}})=\frac{d \overrightarrow{\boldsymbol{A}}}{d t} \cdot \overrightarrow{\boldsymbol{B}}+\overrightarrow{\boldsymbol{A}} \cdot \frac{d \overrightarrow{\boldsymbol{B}}}{d t}
$$

WORK AND KINETIC ENERGY

TOPIC
5. * Power
6. Center-of-Mass W - KE Theorem

RELEVANT EQUATIONS AND REMARKS

$$
P=\frac{d W}{d t}=\overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{v}}
$$

$$
\int_{1}^{2} \overrightarrow{\boldsymbol{F}}_{n e t} \cdot d \overrightarrow{\boldsymbol{s}}_{c m}=\Delta K
$$

This relation is a useful problem-solving tool if for systems that cannot be modeled as a particle.

Center-of-mass work

$$
W_{c m}=\int_{1}^{2} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{s}}_{c m}
$$

Translational kinetic energy

$$
K_{T}=\frac{1}{2} M v^{2} \text {, where } M=\sum_{i=1}^{n} m_{i}
$$

TOPICS

1. Conservative Force
2. The work - energy theorem and the conservation of energy are fundamental laws of nature that have applications in all areas of physics.
3. The conservation of mechanical energy is an important relation derived from Newton's laws for conservative forces. It is useful in solving many problems.

RELEVANT EQUATIONS AND REMARKS

A force is conservative if the total work it does on a particle is zero when the particle moves along any path that returns it to its initial position. Alternatively, the work done by a conservative force on a particle is independent of the path taken by the particle as it moves from one point to another.
2. Potential Energy

The potential energy of a system is the energy associated with the configuration of the system. The change in the potential energy of a system is defined as the negative of the work done by all internal conservative forces acting on the system.

Definition	$\Delta U \equiv U_{2}-U_{1}=-W=-\int_{1}^{2} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{s}}$
$d U \equiv-\overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{s}}$	
* Gravitational	$U_{g}=U_{0}+m g y$
* Elastic (spring)	$U_{s}=\frac{1}{2} k x^{2}$
Conservative force	$F_{x}=-\frac{d U}{d x}$

CONSERVATION OF ENERGY

TOPIC	RELEVANT EQUATIONS AND REMARKS
Potential-energy curve	At a minimum on the curve of the potential-energy function versus the displacement, the force is zero and the system is in stable equilibrium. At a maximum, the force is zero and the system is in unstable equilibrium. A conservative force always tends to accelerate a particle toward a position of lower potential energy.
3. Mechanical Energy	The sum of the kinetic and potential energies of a system is defined as the total mechanical energy: $E_{\text {mech }} \equiv K_{s y s}+U_{s y s}$
Work - Energy Theorem for Systems	The total work done on a system by external forces equals the change in mechanical energy of the system less the total work done by internal nonconservative forces: $W_{e x t}=\Delta E_{\text {mech }}-W_{n c}$
Conservation of Mechanical Energy	If no external forces do work on the system, and if no internal nonconservative forces do work, then the mechanical energy of the system is constant: $K_{f}+U_{f}=K_{i}+U_{i}$
4. Problem Solving	The conservation of mechanical energy and the work - energy theorem can be used as an alternative to Newton's laws to solve mechanics problems that require the determination of the speed of a particle as a function of its position.

CONSERVATION OF LINEAR MOMENTUM

The conservation of momentum for an isolated system is a fundamental law of nature that has applications in all areas of physics.

TOPIC

RELEVANT EQUATIONS AND REMARKS

1. Momentum

* Definition for a particle	$\overrightarrow{\boldsymbol{p}} \equiv m \overrightarrow{\boldsymbol{v}}$
Kinetic energy of a particle	$K=\frac{p^{2}}{2 m}$
* Newton's second law for a particle	$\overrightarrow{\boldsymbol{F}}=\frac{d \overrightarrow{\boldsymbol{p}}}{d t}$
Momentum of a system	$\overrightarrow{\boldsymbol{p}}_{\text {sys }}=\sum_{i=1}^{n} m_{i} \overrightarrow{\boldsymbol{v}}_{\boldsymbol{i}}=M \overrightarrow{\boldsymbol{v}}_{\text {sys }}$

2. Collisions

* Impulse

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{J}}=\int_{t_{i}}^{t_{i}} \overrightarrow{\boldsymbol{F}} d t=\Delta \overrightarrow{\boldsymbol{p}} \\
& \vec{F}_{\text {avg }}=\frac{\vec{J}}{\Delta t}\left(\text { so } \vec{J}=\vec{F}_{\text {avg }} \Delta t\right)
\end{aligned}
$$

Law of conservation of momentum
If the net external force acting on a system remains zero, the total momentum of the system is conserved. For a two particle system:

$$
m_{1} \overrightarrow{\boldsymbol{v}}_{1 i}+m_{2} \overrightarrow{\boldsymbol{v}}_{2 i}=m_{1} \overrightarrow{\boldsymbol{v}}_{1 f}+m_{2} \overrightarrow{\boldsymbol{v}}_{2 f}
$$

Inelastic collisions
Perfectly inelastic collisions
Kinetic energy is lost during an inelastic collision.
Following a perfectly inelastic collision, the two objects stick together and move with a common velocity:

$$
m_{1} \overrightarrow{\boldsymbol{v}}_{1 i}+m_{2} \overrightarrow{\boldsymbol{v}}_{2 i}=\left(m_{1}+m_{2}\right) \overrightarrow{\boldsymbol{v}}_{f}
$$

Elastic collisions
An elastic collision between two objects is one in which the sum of their kinetic energies is the same before and after the collision.

TOPIC

1. Angular displacement, angular velocity, and angular acceleration are fundamental defined quantities in rotational kinematics.
2. Torque and moment of inertia are important derived dynamic concepts. Torque is a measure of the effect of a force in changing an object's rate of rotation. Moment of inertia is the measure of an object's inertial resistance to angular accelerations. The moment of inertia depends on the distribution of the mass relative to the rotation axis.
3. The parallel-axis theorem, which follows from the definition of the moment of inertia, often simplifies the calculation of I.
4. Newton's second law for rotation, $\sum \overrightarrow{\boldsymbol{\tau}}=I \overrightarrow{\boldsymbol{\alpha}}$, is derived from Newton's second law and the definitions of τ, I, and α. It is an important relation for problems involving the rotation of a rigid object about an axis of fixed direction.
5. Angular Velocity and Angular Acceleration
Angular velocity $\quad \omega \equiv \frac{d \theta}{d t}$

Angular acceleration

$$
\alpha \equiv \frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}
$$

* Tangential speed $\quad v_{t}=r \omega$

Tangential acceleration $\quad a_{t}=r \alpha$
Centripetal acceleration $\quad a_{c}=\frac{v^{2}}{r}=\omega^{2} r$

ROTATION

TOPIC

RELEVANT EQUATIONS AND REMARKS

2. Equations for Rotation with Constant Angular Acceleration

* Angular velocity

$$
\omega_{f}=\omega_{i}+\alpha t
$$

Average angular velocity

$$
\omega_{\text {avg }}=\frac{1}{2}\left(\omega_{i}+\omega_{f}\right)
$$

* Angular displacement

$$
\Delta \theta=\theta_{f}-\theta_{i}=\omega_{i} t+\frac{1}{2} \alpha t^{2}
$$

ω^{2} as a function of $\Delta \theta$

$$
\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta
$$

3. Moment of Inertia

$$
\begin{aligned}
\text { * System of particles } & I \equiv \sum_{i=1}^{n} m_{i} r_{i}^{2} \\
\hline \text { * Continuous object } & I=\int r^{2} d m \\
\hline \text { Uniform hoop about center } & I=M R^{2} \\
\hline \text { Uniform solid disk about center } & I=\frac{1}{2} M R^{2} \\
\hline \text { Uniform solid sphere about center } & I=\frac{2}{5} M R^{2} \\
\hline \text { Uniform rod about center } & I=\frac{1}{12} M L^{2} \\
\hline \text { Uniform rod about one end } & I=\frac{1}{3} M L^{2}
\end{aligned}
$$

Parallel-axis theorem
The moment of inertia about an axis a distance D from a parallel axis through the center of mass is

$$
I=I_{c m}+M D^{2}
$$

where $I_{c m}$ is the moment of inertia about the axis through the center of mass and M is the total mass of the object.

ROTATION

TOPIC

4. Energy

$$
\begin{array}{ll}
* \text { Rotational kinetic energy } & K_{R}=\frac{1}{2} I \omega^{2} \\
\hline \text { Power } & P=\tau \omega
\end{array}
$$

5. * Torque About an Axis

The torque due to a force equals the product of the tangential component of the force and the radial distance from the axis to the point of application of the force:

$$
\tau=\operatorname{Frsin} \phi=F d
$$

6. * Newton's $2^{\text {nd }}$ Law for Rotation

$$
\tau_{\text {net }}=\sum_{i=1}^{n} \tau_{i}=I \alpha
$$

7. Nonslip Conditions

If a string that is wrapped around a pulley wheel does not slip, the linear and angular quantities are related by:

$$
\begin{aligned}
& v_{t}=R \omega \\
& a_{t}=R \alpha
\end{aligned}
$$

8. Rolling Motion

Rolling without slipping $\quad v_{c m}=R \omega$
Total kinetic energy

$$
K=K_{T}+K_{R}=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} I \omega^{2}
$$

TOPIC

1. Vector Nature of Rotation

Angular velocity $\overrightarrow{\boldsymbol{\omega}}$	The direction of the angular velocity $\vec{\omega}$ is along the axis of rotation in the direction given by the right-hand rule.
Torque $\overrightarrow{\boldsymbol{\tau}}$	$\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}$
2. Vector (Cross) Product	$\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}} \equiv A B \sin \phi \hat{\boldsymbol{n}}$ where ϕ is the angle between the vectors and $\hat{\boldsymbol{n}}$ is a unit vector perpendicular to the plane of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ in the direction given by the right-hand rule as $\overrightarrow{\boldsymbol{A}}$ is rotated into $\overrightarrow{\boldsymbol{B}}$.
Properties	$\begin{aligned} & \overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{A}}=0 \\ & \overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=-\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}} \\ & \frac{d}{d t}(\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}})=\left(\overrightarrow{\boldsymbol{A}} \times \frac{d \overrightarrow{\boldsymbol{B}}}{d t}\right)+\left(\frac{d \overrightarrow{\boldsymbol{A}}}{d t} \times \overrightarrow{\boldsymbol{B}}\right) \\ & \hat{\boldsymbol{i}} \times \hat{\boldsymbol{j}}=\hat{\boldsymbol{k}}, \hat{\boldsymbol{j}} \times \hat{\boldsymbol{k}}=\hat{\boldsymbol{i}}, \text { and } \hat{\boldsymbol{k}} \times \hat{\boldsymbol{i}}=\hat{\boldsymbol{j}} \\ & \hat{\boldsymbol{i}} \times \hat{\boldsymbol{i}}=\hat{\boldsymbol{j}} \times \hat{\boldsymbol{j}}=\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}}=0 \end{aligned}$

ANGULAR MOMENTUM

TOPIC

RELEVANT EQUATIONS AND REMARKS

3. Angular Momentum

* For a point particle	$\overrightarrow{\mathbf{L}} \equiv \overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{p}}$
	$L=m v r \sin \phi$
* For rotation about an axis	$\overrightarrow{\mathbf{L}}=I \overrightarrow{\boldsymbol{\omega}}$
Newton's ${ }^{\text {nd }}$ law for angular momentum	$\overrightarrow{\boldsymbol{\tau}}=\frac{d \overrightarrow{\mathbf{L}}}{d t}$

Conservation of angular momentum

If the net external torque remains zero, the angular momentum of the system is conserved. (If the component of the net external torque in a given direction remains zero, the component of the angular momentum of the system in that direction remains conserved.)

Rotational kinetic energy $\quad K_{R}=\frac{L^{2}}{2 I}$

STATIC EQUILIBRIUM

TOPIC
RELEVANT EQUATIONS AND REMARKS

1. Equilibrium of a Rigid Object

Conditions

1. The net external force acting on the object must be zero:

$$
\sum \overrightarrow{\boldsymbol{F}}_{e x t}=0
$$

2. The net external torque about any point must be zero:

$$
\sum \overrightarrow{\boldsymbol{\tau}}_{\text {ext }}=0
$$

The sum of the torques about any axis also equals zero.

Stability

The equilibrium of an object can be classified as stable, unstable, or neutral. An object resting on some surface will be in equilibrium if its center of gravity lies over its base of support. Stability can be improved by lowering the center of gravity or by increasing the width of the base.
2. Center of Gravity The force of gravity exerted on the various parts of an object can be replaced by a single force, the total gravitational force, acting at the center of gravity:

$$
\overrightarrow{\boldsymbol{\tau}}_{\text {net }}=\sum_{i}\left(\overrightarrow{\boldsymbol{r}}_{i} \times \overrightarrow{\boldsymbol{F}}_{g i}\right)=\overrightarrow{\boldsymbol{r}}_{c g} \times \overrightarrow{\boldsymbol{F}}_{g}
$$

For an object in a uniform gravitational field, the center of gravity coincides with the center of mass.

3. Couples

A pair of equal and opposite forces constitutes a couple. The torque produced by a couple is the same about any point in space.

$$
\overrightarrow{\boldsymbol{\tau}}=\left(\overrightarrow{\boldsymbol{r}}_{2}-\overrightarrow{\boldsymbol{r}}_{1}\right) \times \overrightarrow{\boldsymbol{F}}, \text { so } \tau=F D
$$

where D is the distance between the lines of action of the forces.

GRAVITATION

1. Kepler's laws are empirical observations. They can also be derived from Newton's laws of motion and Newton's law of gravity.
2. Newton's law of gravity is a fundamental law of physics, and G is a fundamental universal physical constant.
3. The gravitational field is a fundamental physical concept that describes the condition in space set up by a mass distribution.

TOPIC

RELEVANT EQUATIONS AND REMARKS

1. Kepler's Three Laws

Law 1

Law 2

Law 3

All of the planets move in elliptical orbits with the Sun at one focus.

A line joining any planet to the Sun sweeps out equal areas in equal times.

The square of the period of any planet is proportional to the cube of the planet's mean distance from the Sun:

$$
T^{2}=C r^{3}
$$

where C has almost the same value for all planets; from
Newton's law of gravity, C can be shown to be $4 \pi^{2} /\left[G\left(M_{\mathrm{S}}+M_{\mathrm{P}}\right)\right]$. If $M_{\mathrm{S}} \gg M_{\mathrm{P}}$, this can be expressed as

$$
T^{2}=\left(\frac{4 \pi^{2}}{G M_{s}}\right) r^{3}
$$

GRAVITATION

TOPIC

RELEVANT EQUATIONS AND REMARKS

Kepler's laws can be derived from Newton's law of gravity. The first and third of Kepler’s laws follow from the fact that the force exerted by the Sun on the planets varies inversely as the square of the separation distance. The second law follows from the fact that the force exerted by the Sun on a planet is along the line joining them, so the orbital angular momentum of the planet is conserved. Kepler's laws also hold for any object orbiting another in an inverse-square gravitational field, such as a satellite orbiting a planet.
2. * Newton's Law of Gravity Every point particle exerts an attractive force on every other point particle that is proportional to the masses of the two particles and inversely proportional to the square of the distance separating them:

$$
\overrightarrow{\boldsymbol{F}}_{12}=-\frac{G m_{1} m_{2}}{r_{12}^{2}} \hat{\mathbf{r}}_{12}
$$

* Universal gravitational constant	$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
3. Free-Fall Acceleration	$g=\frac{G M_{E}}{r^{2}}=\frac{G M_{E}}{\left(R_{E}+h\right)^{2}}$

4. * Gravitational Potential Energy

The gravitational potential energy U for a system consisting of a particle of mass m outside a spherically symmetric object of mass M and at a distance r from its center is:

$$
U(r)=-\frac{G M m}{r}
$$

This potential-energy function approaches zero as r approaches infinity.

GRAVITATION

TOPIC

RELEVANT EQUATIONS AND REMARKS

5. Orbital Mechanical Energy

The mechanical energy E for a system consisting of a particle of mass m outside a spherically symmetric object of mass M and at a distance r from its center is:

$$
E=\frac{1}{2} m v^{2}-\frac{G M m}{r}
$$

However, because gravity provides the centripetal force for a circular orbit, v is dependent on r and

$$
E=-\frac{G M m}{2 r}
$$

Escape Speed
For a given value of r, the speed of the particle for which $E=0$ is called the escape speed, v_{e}. On Earth,

$$
v_{e}=\sqrt{\frac{2 G M_{E}}{R_{E}}}
$$

6. Gravitational Field

Definition

$$
\overrightarrow{\boldsymbol{g}}=\frac{\overrightarrow{\boldsymbol{F}}_{g}}{m}
$$

Due to Earth

$$
\vec{g}=-\frac{G M_{E}}{r^{2}} \hat{r} \quad\left(r \geq R_{E}\right)
$$

Due to a thin spherical shell
Outside the shell, the gravitational field is the same as if all the mass of the shell were concentrated at the center. The field inside the shell is zero.

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{g}}=-\frac{G M}{r^{2}} \hat{\boldsymbol{r}} \quad(r \geq R) \\
& \overrightarrow{\boldsymbol{g}}=0 \quad(r<R)
\end{aligned}
$$

Simple harmonic motion occurs whenever the restoring force is proportional to the displacement from equilibrium.

TOPIC

1. Simple Harmonic Motion

RELEVANT EQUATIONS AND REMARKS

In simple harmonic motion, the acceleration (and thus the net force) is both proportional to, and oppositely directed from, the displacement from the equilibrium position.

$$
F_{x}=-k x=m a_{x}
$$

In general, any motion that satisfies the following differential equation will be simple harmonic motion:

$$
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x
$$

Position function	$x=A \cos (\omega t+\phi)$
Velocity function	$v=\frac{d x}{d t}=-\omega A \sin (\omega t+\phi)$
Acceleration function	$v_{\text {max }}=\omega A($ at $x=0)$
Maximum speed	$a_{\text {max }}=\omega^{2} A($ at $x= \pm A)$
Maximum acceleration	$\omega=2 \pi f=\frac{d \pi}{T}$
Angular frequency	$f=\frac{d^{2} x}{T}=\frac{\omega}{2 \pi}$
Frequency	$T=\frac{1}{f}=\frac{2 \pi}{\omega}$
$*$ Period	$E=K+U=\frac{1}{2} k A^{2}$
Mechanical energy	If a particle moves in a circle with constant speed, the
projection of the particle onto a diameter of the circle	
moves in simple harmonic motion.	

OSCILLATIONS

TOPIC
General motion near equilibrium

RELEVANT EQUATIONS AND REMARKS
If an object is given a small displacement from a position of stable equilibrium, it typically oscillates about this position with simple harmonic motion.
2. Natural Frequencies for Various Systems

* Mass on spring $\quad \omega=\sqrt{\frac{k}{m}}$
* Simple pendulum
$\omega=\sqrt{\frac{\bar{g}}{L}}$

Physical pendulum
$\omega=\sqrt{\frac{M g D}{I}}$
where I is the moment of inertia about the pivot and D is the distance of the center of mass from the rotation axis.

Torsional oscillator

$$
\omega=\sqrt{\frac{\kappa}{I}}
$$

where I is the moment of inertia and κ is the torsional constant.

