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You are permitted use of a scientific calculator and the College Board's AP Physics equation sheet

for the ENTIRE exam (see www.collegeboard.org/ap/calculators for a list of acceptable calculators).

The reason for this is explained in the AP Physics Course Description:

The purpose of allowing calculators and equation sheets to be used in both sections of the exam is to

place greater emphasis on the understanding and application of fundamental physical principles and

concepts. For solving problems and writing essays, a sophisticated scientific or graphing calculator, or

the  availability  of  equations,  is  no  substitute  for  a  thorough  grasp  of  the  physics  involved.  The

availability of these equations to all students means that in the scoring of the exam, little or no credit

will be awarded for simply writing down equations or for answers unsupported by explanations or

logical development.

The AP Physics equation sheet provides a list of fundamental equations from which all others may be

derived. The following list, adapted from Tipler & Mosca's Physics for Scientists and Engineers, Fourth

Edition, describes the topics and all of the equations with which you should be familiar before you take

the AP Physics C: Mechanics Exam. The fundamental equations provided by the College Board are

indicated with an asterisk * on the following pages.
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MEASUREMENT

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Units Physical quantities are numbers that are obtained by 

taking measurements of physical objects. Operational 

definitions specify operations or procedures that, if 

followed, define physical quantities. The magnitude of a 

physical quantity is expressed as a number times a unit.

2. Base Units The base units in the SI system are the meter (m), the

second (s), the kilogram (kg), the kelvin (K), the ampere 

(A), the mole (mol), and the candela (cd). The unit(s) of 

every physical quantity can be expressed in terms of these 

base units.

3. Units in Equations Units in equations are treated just like any other algebraic

quantity.

4. Conversions Conversion factors, which are always equal to 1, provide a

convenient method for converting from one kind of unit to

another.

5. Dimensions The terms of an equation must have the same dimensions.

6. Scientific Notation For convenience, very small and very large numbers are

generally written as a number between 1 and 10 times a 

power of 10.

7. Exponents

Multiplication When multiplying identical bases, the exponents are 

added.

Division When dividing identical bases, the exponents are 

subtracted.

Raising to a power When a number containing an exponent is itself raised to a

power, the exponents are multiplied.
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MEASUREMENT

TOPIC RELEVANT EQUATIONS AND REMARKS

8. Significant Figures

Multiplications and division The number of significant figures in the result of 

multiplication or division is no greater than the least 

number of significant figures in any of the numbers.

Addition and subtraction The result of addition or subtraction of two numbers has 

no significant figures beyond the last decimal place where 

both of the numbers being added or subtracted have 

significant figures.

9. Order of Magnitude A number rounded to the nearest power of 10 is called an

order of magnitude. The order of magnitude of a quantity 

can often be estimated using plausible assumptions and 

simple calculations.
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MOTION IN ONE DIMENSION

Displacement, velocity, and acceleration are important 

defined kinematic quantities.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Displacement Δ x  ≡ x f−x i

Graphical interpretation Displacement is the area under the vx versus t curve.

2. Velocity

Average velocity v x , avg  ≡ Δ x
Δ t

Instantaneous velocity v  ≡ lim
Δ t→0

Δ x
Δ t

 =  dx
dt

Graphical interpretation The instantaneous velocity is the slope of the x versus t 

curve.

3. Speed

Average speed average speed ≡ total distance
   total time

 = s
t

Instantaneous speed Instantaneous speed is the magnitude of the instantaneous 

velocity.

speed = |vx|

4. Acceleration

Average acceleration ax , avg  ≡ 
Δ vx

Δ t

Instantaneous acceleration a  ≡ lim
Δ t→0

Δ vx

Δ t
 = 

dv x

dt
 = d2 x

dt2

Graphical interpretation The instantaneous acceleration is the slope of the vx versus

t curve.

Acceleration due to gravity The acceleration of an object near the surface of Earth in 

free-fall under the influence of gravity alone is directed 

downward and has magnitude g = 9.91 m/s2 ≈ 10 m/s2
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MOTION IN ONE DIMENSION

TOPIC RELEVANT EQUATIONS AND REMARKS

5. Kinematic equations for constant acceleration

* Velocity v xf  = v xi+ax t

Average velocity v x , avg  =  1
2 ( vxi+vxf )

Displacement in terms of vx,avg Δ x  =  x f−x i  = v x ,avg t  = 1
2 (v xi+v xf ) t

* Displacement as a function of time Δ x  =  x f−x i  = v xi t+
1
2

ax t2

* vx
2 as a function of Δx v xf

2  = v xi
2
+2 ax Δ x

6. Displacement & velocity as integrals Displacement is represented graphically as the area 

under the vx versus t curve. This area is the integral of 

vx over time from some initial time ti to some final time 

tf and is written:

Δ x  =  lim
Δ t→0

∑ vx Δ t  = ∫
t i

t f

v x dt

Similarly, change in velocity is represented graphically 

as the area under the ax versus t curve:

Δ vx  = lim
Δ t→0

∑ ax Δ t  = ∫
t i

t f

ax dt
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MOTION IN TWO DIMENSIONS

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Vectors

Definition Vectors are quantities that have both magnitude and 

direction. Vectors add like displacements.

Components The component of a vector in a direction in space is the 

projection of the vector on an axis in that direction. If 

A⃗ makes an angle θ with the positive x direction, its x 

and y components are

  Ax = A cos θ

   Ay = A sin θ

Magnitude A  =  |A⃗| = √ A x
2
+ A y

2

Adding vectors graphically Two vectors may be added graphically by drawing them 

with the tail of the second arrow at the head of the first 

arrow. The arrow representing the resultant vector is 

drawn from the tail of the first vector to the head of the 

second.

Adding vectors using components If C⃗  = A⃗+ B⃗ then Cx = Ax + Bx  and  Cy = Ay + By 

Unit vectors A vector A⃗ can be written in terms of unit vectors

î ,  ĵ ,  and k̂ , which are dimensionless, have unit 

magnitude, and lie along the x, y, and z axes, 

respectively: A⃗  = A x î+ A y ĵ+ A z k̂
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MOTION IN TWO DIMENSIONS

TOPIC RELEVANT EQUATIONS AND REMARKS

2. Kinematic Vectors

Position vector The position vector r⃗ points from the origin of the 

coordinate system to the particle.

Instantaneous velocity vector The velocity vector v⃗ is the rate of change of the 

position vector. Its magnitude is the speed, and it points in 

the direction of motion.

v⃗  ≡ lim
Δ t→0

Δ r⃗
Δ t

 =  d r⃗
dt

Instantaneous acceleration vector a⃗  ≡ lim
Δ t→0

Δ v⃗
Δ t

 =  d v⃗
dt

3. Relative Velocity If a particle p moves with velocity v⃗ pA relative to 

reference frame A, which is in turn moving with velocity

v⃗AB relative to reference frame B, then the velocity of p 

relative to B is:

v⃗ pB  =  v⃗ pA+ v⃗AB

4. Projectile Motion with No The +x direction is horizontal and the +y direction is

Air Resistance upward for the equations in this section.

Independence of motion In projectile motion, the horizontal and vertical motions 

are independent.

Acceleration   ax = 0 and ay = – g

Dependence on time v x  =  v xi  = v i cosθ

v y  = v i sinθ−gt

Δ x  =  (v i cosθ) t

Δ y=(v i sinθ)t – 1
2

gt2  

Alternatively, Δ v⃗  = g⃗ t and Δ r⃗  = v⃗ i t+
1
2
g⃗ t2
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MOTION IN TWO DIMENSIONS

TOPIC RELEVANT EQUATIONS AND REMARKS

Peak projectile height H  = 
(vi sinθ)

2

2 g

Hmax  =  
v i

2

2 g
when θ = 90˚

Horizontal projectile range R  = 
v i

2 sin 2θ

g

Rmax  = 
v i

2

g
when θ = 45˚

5. Circular Motion

* Centripetal acceleration ac  = v2

r

Tangential acceleration at  = 
dv
dt

Total acceleration a  = √ac
2+at

2

Period of motion T  =  
distance per revolution
            speed

 =  
2π r

v
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NEWTON'S LAWS

1. Newton’s laws of motion are fundamental laws of

nature that serve as the basis for our understanding of 

mechanics.

2. Mass is an intrinsic property of an object.

3. Force is an important derived dynamic quantity.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Newton's Laws

First law An object at rest stays at rest unless acted on by an 

external force. An object in motion continues to travel 

with constant velocity unless acted on by an external 

force. (Reference frames in which these statement hold are

called inertial reference frames.)

* Second law The acceleration of an object is directly proportional to the

net force acting on it. The reciprocal of the mass of the 

object is the proportionality constant. Thus:

F⃗net  = ∑ F⃗  = m a⃗

Third law When two bodies interact,  force F⃗BA exerted by object 

B on object A is equal in magnitude and opposite in 

direction to force F⃗AB exerted by object A on object B:  

F⃗BA  = −F⃗AB

2. Inertial Reference Frames Our statements of Newton’s first and second laws are

valid only in inertial reference frames. Any reference 

frame that is moving with constant velocity relative to an 

inertial reference frame is itself an inertial reference 

frame, and any reference frame that is accelerating relative

to an inertial frame is not an inertial reference frame. 

Earth’s surface is, to a good approximation, an inertial 

reference frame.
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NEWTON'S LAWS

TOPIC RELEVANT EQUATIONS AND REMARKS

3. Force, Mass, and Weight

Force Force is defined in terms of the acceleration it produces on

a given object. A force of 1 newton (N) is that force which

produces an acceleration of 1 m/s2 on a mass of 1 kg.

Mass Mass is an intrinsic property of an object. It is the measure

of the inertial resistance of the object to acceleration. Mass

does not depend on the location of the object. Applying 

identical forces to each of two objects and measuring their

respective accelerations allows the masses of two objects 

to be compared. The ratio of the masses of the objects is

defined to be equal to the inverse ratio of the accelerations

produced:

m2

m1

 ≡ 
a1

a2

Gravitational force The gravitational force F⃗g on an object near the surface 

of Earth is the force of gravitational attraction exerted by 

Earth on the object. It is proportional to the gravitational 

field g⃗ (which is equal to the free-fall acceleration), and 

the mass m of the object is the proportionality constant:

F⃗g  = m g⃗

The weight of an object is the magnitude of the 

gravitational force on the object.
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APPLICATIONS OF NEWTON'S LAWS

TOPIC RELEVANT EQUATIONS AND REMARKS

1. * Hooke's Law When an unstressed spring is compressed or extended by a

small displacement Δ x⃗ , the restoring force it exerts is 

proportional to Δ x⃗ :

F⃗x  = −k Δ x⃗

2. Friction Two objects in contact exert frictional forces on each

other. These forces are parallel to the contacting surfaces 

and directed so as to oppose sliding or tendency to slide.

3. Drag Forces When an object moves through a fluid, it experiences a

drag force that opposes its motion. The drag force 

increases with increasing speed. If the body is dropped 

from rest, its speed increases. As it does, the magnitude of 

the drag force comes closer and closer to the magnitude of

the force of gravity, so the net force, and thus the

acceleration, approaches zero. As the acceleration 

approaches zero, the speed approaches a constant value 

called its terminal speed. The terminal speed depends on 

both the shape of the body and on the medium through 

which it falls.
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APPLICATIONS OF NEWTON'S LAWS

TOPIC RELEVANT EQUATIONS AND REMARKS

Drag proportional to velocity F⃗D  = −b v⃗

Where FD is the drag force and b is a proportionality 

constant.

Differential equation for speed
dv
dt

 =  g− b
m

v

Terminal speed v t  = mg
b

Speed as a function of time v  = mg
b

(1−e−bt /m)  = v t (1−e−bt /m)

Acceleration as a function of time a  = dv
dt

 = g e−bt /m

4. Motion Along a Curved Path A particle moving along an arbitrary curve can be

considered to be moving along a circular arc for a short 

time interval. Its instantaneous acceleration vector has a 

component ac = v2/r toward the center of curvature of the 

arc and a component at = dv/dt that is tangential to the

arc. If the particle is moving along a circular path of radius

r at constant speed v, at = 0 and the speed, radius, and 

period T are related by 2πr = vT.

Centripetal force Fc  = m ac  = m v2

r

Speed around an unbanked curve v  ≤ √μs g r

Speed at the top of an inside loop v  ≥ √g r
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APPLICATIONS OF NEWTON'S LAWS

TOPIC RELEVANT EQUATIONS AND REMARKS

5. Center of Mass

* Center of mass for a system The center of mass of a system of particles is defined to be

of particles the point whose coordinates are given by:

xcm  =  
1
M ∑

i=1

n

x i

ycm  = 
1
M ∑

i=1

n

mi yi

zcm  = 
1
M ∑

i=1

n

zi

Center of mass for continuous objects r⃗ cm  = 1
M ∫ r⃗ dm

Position, velocity, and acceleration

for the center of mass of a system

of particles

r⃗ cm  = 1
M (m1 r⃗ 1+m2 r⃗ 2+⋯)

v⃗cm  = 
1
M (m1 v⃗1+m2 v⃗2+⋯)

a⃗cm  = 1
M (m1 a⃗1+m2 a⃗2+⋯)

Newton's second law for a system ∑ F⃗ ext  = m a⃗cm
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WORK AND KINETIC ENERGY

1. Work, kinetic energy, and power are important derived

dynamic quantities.

2. The work – kinetic-energy theorem is an important

relation derived from Newton’s laws applied to a 

particle. (In this context, a particle is a perfectly rigid 

object that moves without rotating.)

3. The scalar product of vectors is a mathematical

definition that is useful throughout physics.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. * Work W  ≡ ∫
1

2

F⃗⋅d s⃗

Constant force W  =  F⃗⋅⃗s  =  F scosθ

Constant force – straight-line motion W  =  F x Δ x  =  F Δ x cosθ

Variable force – straight-line motion W=∫
x i

x f

F x dx = Area under an Fx versus x curve

2. * Kinetic Energy K  ≡ 
1
2

mv2

3. Work – Kinetic-Energy Theorem W  =  Δ K  = 
1
2

m (v f
2
−v i

2)

4. Scalar (Dot) Product A⃗⋅B⃗  ≡ AB cosθ

In terms of components A⃗⋅B⃗  = A x Bx+ A y B y+A z B z

Vector times unit vector A⃗⋅̂i  =  A x

Derivative product rule
d
dt

( A⃗⋅B⃗ )  = d A⃗
dt

⋅B⃗+ A⃗⋅d B⃗
dt
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WORK AND KINETIC ENERGY

TOPIC RELEVANT EQUATIONS AND REMARKS

5. * Power P  = dW
dt

 = F⃗⋅⃗v

6. Center-of-Mass W – KE Theorem ∫
1

2

F⃗net⋅d s⃗ cm  = Δ K

This relation is a useful problem-solving tool if for 

 systems that cannot be modeled as a particle.

Center-of-mass work W cm  = ∫
1

2

F⃗⋅d s⃗cm

Translational kinetic energy KT  = 1
2

Mv2 , where M = ∑
i=1

n

mi
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CONSERVATION OF ENERGY

1. The work – energy theorem and the conservation of

energy are fundamental laws of nature that have 

applications in all areas of physics.

2. The conservation of mechanical energy is an important

relation derived from Newton’s laws for conservative

forces. It is useful in solving many problems.

TOPICS RELEVANT EQUATIONS AND REMARKS

1. Conservative Force A force is conservative if the total work it does on a

particle is zero when the particle moves along any path 

that returns it to its initial position. Alternatively, the work 

done by a conservative force on a particle is independent 

of the path taken by the particle as it moves from one 

point to another.

2. Potential Energy The potential energy of a system is the energy associated

with the configuration of the system. The change in the 

potential energy of a system is defined as the negative of 

the work done by all internal conservative forces acting on

the system.

Definition ΔU  ≡ U 2−U 1  = −W  = −∫
1

2

F⃗⋅d s⃗

dU  ≡ −F⃗⋅d s⃗

* Gravitational U g  =  U0+mgy

* Elastic (spring) U s  = 1
2

kx2

Conservative force F x  = −dU
dx
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CONSERVATION OF ENERGY

TOPIC RELEVANT EQUATIONS AND REMARKS

Potential-energy curve At a minimum on the curve of the potential-energy 

function versus the displacement, the force is zero and the 

system is in stable equilibrium. At a maximum, the force 

is zero and the system is in unstable equilibrium. A 

conservative force always tends to accelerate a particle

toward a position of lower potential energy.

3. Mechanical Energy The sum of the kinetic and potential energies of a system

is defined as the total mechanical energy:

Emech  ≡ K sys+U sys

Work – Energy Theorem for Systems The total work done on a system by external forces equals 

the change in mechanical energy of the system less the 

total work done by internal nonconservative forces:

W ext=Δ Emech−W nc

Conservation of Mechanical Energy If no external forces do work on the system, and if no 

internal nonconservative forces do work, then the 

mechanical energy of the system is constant:

K f +U f  = K i+U i

4. Problem Solving The conservation of mechanical energy and the work –

energy theorem can be used as an alternative to Newton’s 

laws to solve mechanics problems that require the 

determination of the speed of a particle as a function of its 

position.
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CONSERVATION OF LINEAR MOMENTUM

The conservation of momentum for an isolated system is a

fundamental law of nature that has applications in all areas

of physics.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Momentum

* Definition for a particle p⃗  ≡ m v⃗

Kinetic energy of a particle K  = p2

2m

* Newton's second law for a particle F⃗  = 
d p⃗
dt

Momentum of a system p⃗sys  =  ∑
i=1

n

mi v⃗ i  = M v⃗ sys

2. Collisions

* Impulse J⃗  = ∫
t i

t f

F⃗ dt  = Δ p⃗

Average force F⃗avg  =  
J⃗
Δ t

 (so J⃗  = F⃗ avg Δ t )

Law of conservation of momentum If the net external force acting on a system remains zero, 

the total momentum of the system is conserved. For a two 

particle system:

m1 v⃗1 i+m2 v⃗ 2 i  = m1 v⃗1 f +m2 v⃗2 f

Inelastic collisions Kinetic energy is lost during an inelastic collision.

Perfectly inelastic collisions Following a perfectly inelastic collision, the two objects 

stick together and move with a common velocity:

m1 v⃗1 i+m2 v⃗ 2 i  = (m1+m2) v⃗ f

Elastic collisions An elastic collision between two objects is one in which 

the sum of their kinetic energies is the same before and 

after the collision.
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ROTATION

1. Angular displacement, angular velocity, and angular

acceleration are fundamental defined quantities in 

rotational kinematics.

2. Torque and moment of inertia are important derived

dynamic concepts. Torque is a measure of the effect of 

a force in changing an object’s rate of rotation. Moment

of inertia is the measure of an object’s inertial 

resistance to angular accelerations. The moment of 

inertia depends on the distribution of the mass relative 

to the rotation axis.

3. The parallel-axis theorem, which follows from the

definition of the moment of inertia, often simplifies the 

calculation of I.

4. Newton’s second law for rotation, ∑ τ⃗  = I α⃗ , is

derived from Newton’s second law and the definitions 

of τ, I, and α. It is an important relation for problems 

involving the rotation of a rigid object about an axis of 

fixed direction.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Angular Velocity and Angular Acceleration

Angular velocity ω≡
dθ

dt

Angular acceleration α  ≡ dω

dt
 = d2

θ

dt2

* Tangential speed v t  = r ω

Tangential acceleration at  = r α

Centripetal acceleration ac  = v2

r
 = ω2 r
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ROTATION

TOPIC RELEVANT EQUATIONS AND REMARKS

2. Equations for Rotation with Constant Angular Acceleration

* Angular velocity ωf  = ωi+α t

Average angular velocity ωavg  = 1
2 (ωi+ωf )

* Angular displacement Δθ  = θf−θi  = ωi t+
1
2
α t2

ω2 as a function of Δθ ωf
2  =  ωi

2
+2αΔθ

3. Moment of Inertia

* System of particles I  ≡ ∑
i=1

n

mi r i
2

* Continuous object I  = ∫ r2 dm

          Uniform hoop about center I  = MR2

          Uniform solid disk about center I  = 1
2

MR2

          Uniform solid sphere about center I  = 2
5

MR2

          Uniform rod about center I  = 1
12

ML2

          Uniform rod about one end I  = 1
3

ML2

Parallel-axis theorem The moment of inertia about an axis a distance D from a 

parallel axis through the center of mass is

I  = I cm+MD2

where Icm is the moment of inertia about the axis through 

the center of mass and M is the total mass of the object.
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ROTATION

TOPIC RELEVANT EQUATIONS AND REMARKS

4. Energy

* Rotational kinetic energy K R  = 
1
2

I ω
2

Power P  = τω

5. * Torque About an Axis The torque due to a force equals the product of the 

tangential component of the force and the radial distance 

from the axis to the point of application of the force:

τ  = Frsinϕ  =  Fd

6. * Newton’s 2nd Law for Rotation τnet  = ∑
i=1

n

τi  = I α

7. Nonslip Conditions If a string that is wrapped around a pulley wheel does not

slip, the linear and angular quantities are related by:

v t  = Rω

at  = Rα

8. Rolling Motion

Rolling without slipping v cm  = Rω

Total kinetic energy K  = KT+K R  = 1
2

mvcm
2

+
1
2

I ω
2
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ANGULAR MOMENTUM

1. Angular momentum is an important derived dynamic

quantity in macroscopic physics. In microscopic 

physics, spin angular momentum is an intrinsic, 

fundamental property of elementary particles.

2. Conservation of angular momentum is a fundamental

law of nature.

3. Quantization of angular momentum is a fundamental 

law of nature.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Vector Nature of Rotation Right-hand rules are used to obtain the direction of the

angular velocity and the torque.

Angular velocity ω⃗ The direction of the angular velocity ω⃗ is along the axis 

of rotation in the direction given by the right-hand rule.

Torque τ⃗ τ⃗  =  r⃗× F⃗

2. Vector (Cross) Product A⃗×B⃗  ≡ AB sinϕn̂

where ϕ is the angle between the vectors and n̂ is a 

unit vector perpendicular to the plane of A⃗ and B⃗ in 

the direction given by the right-hand rule as A⃗ is rotated

into B⃗ .

Properties A⃗× A⃗  = 0

A⃗×B⃗  = −B⃗× A⃗

d
dt

( A⃗× B⃗)  = ( A⃗×
d B⃗
dt )+(d A⃗

dt
× B⃗)

î× ĵ  =  k̂ ,  ĵ×k̂  =  î ,  and k̂× î  =  ĵ

î× î  = ĵ× ĵ  = k̂×k̂  = 0
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ANGULAR MOMENTUM

TOPIC RELEVANT EQUATIONS AND REMARKS

3. Angular Momentum

* For a point particle L⃗  ≡ r⃗× p⃗

L  = mvr sin ϕ

* For rotation about an axis L⃗  = I ω⃗

Newton’s 2nd law for angular momentum τ⃗  =  d L⃗
dt

Conservation of angular momentum If the net external torque remains zero, the angular 

momentum of the system is conserved. (If the component 

of the net external torque in a given direction remains 

zero, the component of the angular momentum of the 

system in that direction remains conserved.)

Rotational kinetic energy K R  = L2

2 I
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STATIC EQUILIBRIUM

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Equilibrium of a Rigid Object

Conditions 1. The net external force acting on the object must be 

zero:

∑ F⃗ ext  = 0

2. The net external torque about any point must be zero:

∑ τ⃗ext  = 0

The sum of the torques about any axis also equals zero.

Stability The equilibrium of an object can be classified as stable, 

unstable, or neutral. An object resting on some surface 

will be in equilibrium if its center of gravity lies over its 

base of support. Stability can be improved by lowering the

center of gravity or by increasing the width of the base.

2. Center of Gravity The force of gravity exerted on the various parts of an

object can be replaced by a single force, the total 

gravitational force, acting at the center of gravity:

τ⃗net  = ∑
i

( r⃗ i× F⃗gi)  = r⃗ cg× F⃗g

For an object in a uniform gravitational field, the center of

gravity coincides with the center of mass.

3. Couples A pair of equal and opposite forces constitutes a couple.

The torque produced by a couple is the same about any 

point in space.

τ⃗  =  ( r⃗ 2−r⃗ 1)× F⃗ ,  so τ  = FD

where D is the distance between the lines of action of the 

forces.
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GRAVITATION

1. Kepler’s laws are empirical observations. They can also

be derived from Newton’s laws of motion and 

Newton’s law of gravity.

2. Newton’s law of gravity is a fundamental law of 

physics, and G is a fundamental universal physical 

constant.

3. The gravitational field is a fundamental physical

concept that describes the condition in space set up by a

mass distribution.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Kepler’s Three Laws

Law 1 All of the planets move in elliptical orbits with the Sun at 

one focus.

Law 2 A line joining any planet to the Sun sweeps out equal 

areas in equal times.

Law 3 The square of the period of any planet is proportional to 

the cube of the planet’s mean distance from the Sun:

T 2  =  C r3

where C has almost the same value for all planets; from

Newton’s law of gravity, C can be shown to be 

4π2/[G(MS + MP)]. If MS >> MP, this can be expressed as

T 2  =  ( 4π
2

G M S
)r3
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GRAVITATION

TOPIC RELEVANT EQUATIONS AND REMARKS

Kepler’s laws can be derived from Newton’s law of 

gravity. The first and third of Kepler’s laws follow from 

the fact that the force exerted by the Sun on the planets 

varies inversely as the square of the separation distance. 

The second law follows from the fact that the force 

exerted by the Sun on a planet is along the line joining 

them, so the orbital angular momentum of the planet is 

conserved. Kepler’s laws also hold for any object orbiting 

another in an inverse-square gravitational field, such as a 

satellite orbiting a planet.

2. * Newton’s Law of Gravity Every point particle exerts an attractive force on every

other point particle that is proportional to the masses of 

the two particles and inversely proportional to the square 

of the distance separating them:

F⃗12  = −
G m1m2

r12
2

r̂12

* Universal gravitational constant G  = 6.67×10−11 N·m2/kg2

3. Free-Fall Acceleration g  = 
G M E

r2
 =  

G M E

( RE+h)
2

4. * Gravitational Potential Energy The gravitational potential energy U for a system

consisting of a particle of mass m outside a spherically 

symmetric object of mass M and at a distance r from its 

center is:

U (r )  =  −
G M m

r

This potential-energy function approaches zero as r 

approaches infinity.
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GRAVITATION

TOPIC RELEVANT EQUATIONS AND REMARKS

5. Orbital Mechanical Energy The mechanical energy E for a system consisting of a

particle of mass m outside a spherically symmetric object 

of mass M and at a distance r from its center is:

E  =  1
2

mv2
−

GMm
r

 

However, because gravity provides the centripetal force 

for a circular orbit, v is dependent on r and

E  =  −GMm
2 r

Escape Speed For a given value of r, the speed of the particle for which 

E = 0 is called the escape speed, ve. On Earth,

v e  = √ 2GM E

RE

6. Gravitational Field

Definition g⃗  = 
F⃗g

m

Due to Earth g⃗  = −
GM E

r2
r̂    (r≥RE )

Due to a thin spherical shell Outside the shell, the gravitational field is the same as if 

all the mass of the shell were concentrated at the center. 

The field inside the shell is zero.

g⃗  = −GM

r2
r̂    (r≥R )

g⃗  = 0    (r<R )
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OSCILLATIONS

Simple harmonic motion occurs whenever the restoring 

force is proportional to the displacement from equilibrium.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Simple Harmonic Motion In simple harmonic motion, the acceleration (and thus the 

net force) is both proportional to, and oppositely directed 

from, the displacement from the equilibrium position.

F x  = −kx  =  max

In general, any motion that satisfies the following 

differential equation will be simple harmonic motion:

d2 x

dt2
 = −ω

2 x

Position function x  = A cos (ω t+ϕ)

Velocity function v  = dx
dt

 =  −ω A sin (ω t+ϕ)

Acceleration function a  = dv
dt

 = d2 x

dt2
 = −ω

2 A cos(ω t+ϕ)  = −ω
2 x

Maximum speed vmax  =  ω A  (at x  = 0)

Maximum acceleration amax  =  ω2 A  (at x  = ±A )

Angular frequency ω  =  2π f  = 2π

T

Frequency f  = 1
T

 = ω
2π

* Period T  =  1
f

 = 2π
ω

Mechanical energy E  =  K+U  = 1
2

kA 2

Circular motion If a particle moves in a circle with constant speed, the 

projection of the particle onto a diameter of the circle 

moves in simple harmonic motion.
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OSCILLATIONS

TOPIC RELEVANT EQUATIONS AND REMARKS

General motion near equilibrium If an object is given a small displacement from a position 

of stable equilibrium, it typically oscillates about this 

position with simple harmonic motion.

2. Natural Frequencies for Various Systems

* Mass on spring ω  =  √ k
m

* Simple pendulum ω  =  √ g
L

Physical pendulum ω  =  √ MgD
I

where I is the moment of inertia about the pivot and D is 

the distance of the center of mass from the rotation axis.

Torsional oscillator ω  =  √
κ
I

where I is the moment of inertia and κ is the torsional 

constant.
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