
Unit 2: Kinematics

inematics derives its name from the Greek word for “motion,” kinema. Before we can make any

headway in physics, we have to be able to describe how bodies move. Kinematics provides us 

with the language and the mathematical tools to describe motion, whether the motion of a charging 

pachyderm or a charged particle. As such, it provides a foundation that will help us in all areas of 

physics. Kinematics is most intimately connected with dynamics: while kinematics describes motion, 

dynamics explains the causes for this motion.

K

Displacement

Displacement is a vector quantity, commonly denoted by the vector s, that reflects an object’s change in

spatial position. The displacement of an object that moves from point A to point B is a vector whose tail

is at A and whose tip is at B. Displacement deals only with the separation between points A and B, and 

not with the path the object followed between points A and B. By contrast, the distance that the object 

travels is equal to the length of path AB.

Students often mistake displacement for distance.  A question favored by test makers everywhere is to 

ask the displacement of an athlete who has run a lap on a 400-meter track. The answer, of course, is 

zero: after running a lap, the athlete is back where he or she started. The distance traveled by the 

athlete, and not the displacement, is 400 meters.



Example

Alan and Eva are walking through a beautiful garden. Because Eva is very worried about an 

upcoming Physics Test, she takes no time to smell the flowers and instead walks on a straight path 

from the west garden gate to the east gate, a distance of 100 meters. Alan, unconcerned about the 

test, meanders off the straight path to smell all the flowers in sight. When Alan and Eva meet at the 

east gate, who has walked a greater distance? What are their displacements? 

Since Eva took the direct path between the west and east garden gates and Alan took an indirect

path, Alan has traveled a much greater distance than Eva. Yet, as we have discussed, 

displacement is a vector quantity that measures the distance separating the starting point from 

the ending point: the path taken between the two points is irrelevant. So Alan and Eva both 

have the same displacement: 100 meters east of the west gate. Note that, because displacement 

is a vector quantity, it is not enough to say that the displacement is 100 meters: you must also 

state the direction of that displacement. The distance that Eva has traveled is exactly equal to 

the magnitude of her displacement: 100 meters. 



Example

After reaching the east gate, Eva and Alan notice that the gate is locked, so they must turn around 

and exit the garden through the west gate. On the return trip, Alan again wanders off to smell the 

flowers, and Eva travels the path directly between the gates. At the center of the garden, Eva stops to 

throw a penny into a fountain. At this point, what is her displacement from her starting point at the 

west gate? 

Eva is now 50 meters from the west gate, so her displacement is 50 meters, even though she has

traveled a total distance of 150 meters. 

When Alan and Eva reconvene at the west gate, their displacements are both zero, as they both 

began and ended their garden journey at the west gate. The moral of the story? Always take 

time to smell the flowers!



Speed, Velocity, and Acceleration

Along with displacement, velocity and acceleration round out the holy trinity of kinematics. As you’ll 

see, all three are closely related to one another, and together they offer a pretty complete understanding 

of motion. Speed, like distance, is a scalar quantity that won’t come up too often in Physics, but it 

might trip you up if you don’t know how to distinguish it from velocity.

Speed and Velocity

As distance is to displacement, so speed is to velocity: the crucial difference between the two is that 

speed is a scalar and velocity is a vector quantity. In everyday conversation, we usually say speed when

we talk about how fast something is moving. However, in physics, it is often important to determine the

direction of this motion, so you’ll find velocity come up in physics problems far more frequently than 

speed.

A common example of speed is the number given by the speedometer in a car. A speedometer tells us 

the car’s speed, not its velocity, because it gives only a number and not a direction. Speed is a measure 

of the distance an object travels in a given length of time:

average speed  =  
distance traveled
    time elapsed

 =  
d
Δ t

Velocity is a vector quantity defined as rate of change of the displacement vector over time:

average velocity  = 
change in displacement
         time elapsed

 = 
Δ s
Δt

It is important to remember that the average speed and the magnitude of the average velocity may not 

be equivalent.



Instantaneous Speed and Velocity

The two equations given above for speed and velocity discuss only the average speed and average 

velocity over a given time interval. Most often, as with a car’s speedometer, we are not interested in an 

average speed or velocity, but in the instantaneous velocity or speed at a given moment. That is, we 

don’t want to know how many meters an object covered in the past ten seconds; we want to know how 

fast that object is moving right now. Instantaneous velocity is not a tricky concept: we simply take the 

equation above and assume that Δt is very, very small. Unless a question specifically asks you about the

average velocity or speed over a given time interval, you can safely assume that it is asking about the 

instantaneous velocity at a given moment.

Example

Which of the following sentences contains an example of instantaneous velocity?
(A) “The car covered 500 kilometers in the first 10 hours of its northward journey.”
(B) “Five seconds into the launch, the rocket was shooting upward at 5000 meters per second.”
(C) “The cheetah can run at 70 miles per hour.” 
(D) “Moving at five kilometers per hour, it will take us eight hours to get to the base camp.”
(E) “Roger Bannister was the first person to run one mile in less than four minutes.”

Instantaneous velocity has a magnitude and a direction, and deals with the velocity at a 

particular instant in time. All three of these requirements are met only in B. A is an example of 

average velocity, C is an example of instantaneous speed, and both D and E are examples of 

average speed.

Acceleration

Speed and velocity only deal with movement at a constant rate. When we speed up, slow down, or 

change direction, we want to know our acceleration. Acceleration is a vector quantity that measures the 

rate of change of the velocity vector with time:

average acceleration  =  
change in velocity
     time elapsed

 =  
Δ v
Δ t



Applying the Concepts of Speed, Velocity, and Acceleration

With these three definitions under our belt, let’s apply them to a little story of a zealous high school 

student called Andrea. Andrea is due to take SAT II Physics at the ETS building 10 miles due east from 

her home. Because she is particularly concerned with sleeping as much as possible before the test, she 

practices the drive the day before so she knows exactly how long it will take and how early she must 

get up.

Instantaneous Velocity

After starting her car, she zeros her odometer so that she can record the exact distance to the test center.

Throughout the drive, Andrea is cautious of her speed, which is measured by her speedometer. At first 

she is careful to drive at exactly 30 miles per hour, as advised by the signs along the road. Chuckling to 

herself, she notes that her instantaneous velocity—a vector quantity—is 30 miles per hour due east.

Average Acceleration

Along the way, Andrea sees a new speed limit sign of 40 miles per hour, so she accelerates. Noting with

her trusty wristwatch that it takes her two seconds to change from 30 miles per hour due east to 40 

miles per hour due east, Andrea calculates her average acceleration during this time frame:

average acceleration  = 
40 mi/hr - 30 mi/hr

2 s
 =  

10 mi/hr
2 s

⋅
3600 s

1hr
 =  18,000 mi/hr

2
 due east



This may seem like an outrageously large number, but in terms of meters per second squared, the 

standard units for measuring acceleration, it comes out to 0.22 m/s2.

Average Velocity: One Way

After reaching the tall, black ETS skyscraper, Andrea notes that the test center is exactly 10 miles from 

her home and that it took her precisely 16 minutes to travel between the two locations. She does a quick

calculation to determine her average velocity during the trip:

average velocity  = 
 10 mi
16  min

⋅
60  min

1hr
 = 37.5mi/hr due east

Average Speed and Velocity: Return Journey

Satisfied with her little exercise, Andrea turns the car around to see if she can beat her 16-minute time. 

Successful, she arrives home without a speeding ticket in 15 minutes. Andrea calculates her average 

speed for the entire journey to ETS and back home:

average velocity  = 
          20 mi
(16 min + 15 min)

⋅
60  min

1hr
 = 38.7mi/hr

Is this the same as her average velocity? Andrea reminds herself that, though her odometer reads 20 

miles, her net displacement—and consequently her average velocity over the entire length of the trip—

is zero. SAT II Physics is not going to get her with any trick questions like that!



Kinematics with Graphs 

A common way of testing kinematics qualitatively is to present you with a graph plotting position vs. 

time, velocity vs. time, or acceleration vs. time and to ask you questions about the motion of the object 

represented by the graph. Knowing how to read such graphs quickly and accurately will not only help 

you solve problems of this sort, it will also help you visualize the often-abstract realm of kinematic 

equations. In the examples that follow, we will examine the movement of an ant running back and forth

along a line.

Position vs. Time Graphs

Position vs. time graphs give you an easy and obvious way of determining an object’s displacement at 

any given time, and a subtler way of determining that object’s velocity at any given time. Let’s put 

these concepts into practice by looking at the following graph charting the movements of our friendly 

ant.

Any point on this graph gives us the position of the ant at a particular moment in time. For instance, the

point at (2,–2) tells us that, two seconds after it started moving, the ant was two centimeters to the left 

of its starting position. 



Let’s read what the graph can tell us about the ant’s movements. For the first two seconds, the ant is 

moving to the left. Then, in the next second, it reverses its direction and moves quickly to y = 1 cm. 

The ant then stays still at y = 1 cm for three seconds before it turns left again and moves back to where 

it started. Note how concisely the graph displays all this information.

Calculating Velocity

We know the ant’s displacement, and we know how long it takes to move from place to place. Armed 

with this information, we should also be able to determine the ant’s velocity, since velocity measures 

the rate of change of displacement over time. If displacement is given here by the vector y, then the 

average velocity of the ant is

v avg  =  
Δ y
Δ t

If you recall, the slope of a graph is a measure of rise over run; that is, the amount of change in the y 

direction divided by the amount of change in the x direction. In our graph, Δy is the change in the 

vertical direction and Δt is the change in the horizontal direction, so v is a measure of the slope of the 

graph. For any position vs. time graph, the velocity at time t is equal to the slope of the line at t. In a 

graph made up of straight lines, like the one above, we can easily calculate the slope at each point on 

the graph, and hence know the instantaneous velocity at any given time. 

We can tell that the ant has a velocity of zero from t = 3 s to t = 6 s, because the slope of the line at 

these points is zero. We can also tell that the ant is cruising along at the fastest speed between t = 2 s 

and t = 3 s, because the position vs. time graph is steepest between these points. Calculating the ant’s 

average velocity during this time interval is a simple matter of dividing rise by run, as we’ve learned in 

math class.

v avg  =  
Δ y
Δ t

 =  
y f − y i

t f −ti

 =  
(1−(−2))  cm

(3−2) s
 =  3  cm/s to the right



Average Velocity

How about the average velocity between t = 0 s and t = 3 s? It’s actually easier to sort this out with a 

graph in front of us, because it’s easy to see the displacement at t = 0 s and t = 3 s, and so that we don’t 

confuse displacement and distance.

v avg  =  
Δ y
Δ t

 =  
(1−0) cm
(3−0) s

 = 0.33  cm/s to the right

Average Speed

Although the total displacement in the first three seconds is one centimeter to the right, the total 

distance traveled is two centimeters to the left, and then three centimeters to the right, for a grand total 

of five centimeters. Thus, the average speed is not the same as the average velocity of the ant. Once 

we’ve calculated the total distance traveled by the ant, though, calculating its average speed is not 

difficult:

5  cm
3  s

 =  1.67  cm/s

Curved Position vs. Time Graphs

This is all well and good, but how do you calculate the velocity of a curved position vs. time graph? 

Well, the bad news is that you’d need calculus. The good news is that this class doesn’t expect you to 

use calculus, so if you are given a curved position vs. time graph, you will only be asked qualitative 

questions and won’t be expected to make any calculations. A few points on the graph will probably be 

labeled, and you will have to identify which point has the greatest or least velocity. Remember, the 

point with the greatest slope has the greatest velocity, and the point with the least slope has the least 

velocity. The turning points of the graph, the tops of the “hills” and the bottoms of the “valleys” where 

the slope is zero, have zero velocity. 



In this graph, for example, the velocity is zero at points A and C, greatest at point D, and smallest at 

point B. The velocity at point B is smallest because the slope at that point is negative. Because velocity 

is a vector quantity, the velocity at B would be a large negative number. However, the speed at B is 

greater even than the speed at D: speed is a scalar quantity, and so it is always positive. The slope at B 

is even steeper than at D, so the speed is greatest at B.

Velocity vs. Time Graphs

Velocity vs. time graphs are the most eloquent kind of graph we’ll be looking at here. They tell us very 

directly what the velocity of an object is at any given time, and they provide subtle means for 

determining both the position and acceleration of the same object over time. The “object” whose 

velocity is graphed below is our ever-industrious ant, a little later in the day.



We can learn two things about the ant’s velocity by a quick glance at the graph. First, we can tell 

exactly how fast it is going at any given time. For instance, we can see that, two seconds after it started 

to move, the ant is moving at 2 cm/s. Second, we can tell in which direction the ant is moving. From 

t = 0 s to t = 4 s, the velocity is positive, meaning that the ant is moving to the right. From t = 4 s to 

t = 7 s, the velocity is negative, meaning that the ant is moving to the left.

Calculating Acceleration

We can calculate acceleration on a velocity vs. time graph in the same way that we calculate velocity 

on a position vs. time graph. Acceleration is the rate of change of the velocity vector, , which 

expresses itself as the slope of the velocity vs. time graph. For a velocity vs. time graph, the 

acceleration at time t is equal to the slope of the line at t. 

What is the acceleration of our ant at t = 2.5 s and t = 4 s? Looking quickly at the graph, we see that the

slope of the line at t = 2.5 s is zero and hence the acceleration is likewise zero. The slope of the graph 

between t = 3 s and t = 5 s is constant, so we can calculate the acceleration at t = 4 s by calculating the 

average acceleration between t = 3 s and t = 5 s:

aavg  =  
Δ v
Δ t

 =  
v f −vi

t f −t i

 =  
((−2)−2) cm/s

(5−3)  s
 = −2 cm/s2

The minus sign tells us that acceleration is in the leftward direction, since we’ve defined the y-

coordinates in such a way that right is positive y and left is negative y. At t = 3 s, the ant is moving to 

the right at 2 cm/s, so a leftward acceleration means that the ant begins to slow down. Looking at the 

graph, we can see that the ant comes to a stop at t = 4 s, and then begins accelerating to the right.

Calculating Displacement

Velocity vs. time graphs can also tell us about an object’s displacement. Because velocity is a measure 

of displacement over time, we can infer that:

displacement = velocity × time



Graphically, this means that the displacement in a given time interval is equal to the area under the 

graph during that same time interval. If the graph is above the t-axis, then the positive displacement is 

the area between the graph and the t-axis. If the graph is below the t-axis, then the displacement is 

negative, and is the area between the graph and the t-axis. Let’s look at two examples to make this rule 

clearer.

First, what is the ant’s displacement between t = 2 s and t = 3 s? Because the velocity is constant during

this time interval, the area between the graph and the t-axis is a rectangle of width 1 s and height 

2 cm/s.

 

The displacement between t = 2 s and t = 3 s is the area of this rectangle, which is 2 cm/s × 1 s = 2 cm 

to the right. 



Next, consider the ant’s displacement between t = 3 s and t = 5 s. This portion of the graph gives us two

triangles, one above the t-axis and one below the t-axis. 

Both triangles have an area of ½ (1 s) (2 cm/s) = 1 cm. However, the first triangle is above the t-axis, 

meaning that displacement is positive, and hence to the right, while the second triangle is below the t-

axis, meaning that displacement is negative, and hence to the left. The total displacement between t = 3 

s and t = 5 s is:

1 cm + (-1 cm) = 0

In other words, at t = 5 s, the ant is in the same place as it was at t = 3 s.

Curved Velocity vs. Time Graphs

As with position vs. time graphs, velocity vs. time graphs may also be curved. Remember that regions 

with a steep slope indicate rapid acceleration or deceleration, regions with a gentle slope indicate small 

acceleration or deceleration, and the turning points have zero acceleration.



Acceleration vs. Time Graphs

After looking at position vs. time graphs and velocity vs. time graphs, acceleration vs. time graphs 

should not be threatening. Let’s look at the acceleration of our ant at another point in its dizzy day.

Acceleration vs. time graphs give us information about acceleration and about velocity. We will 

generally sticks to problems that involve a constant acceleration. In this graph, the ant is accelerating at

1 m/s2 from t = 2 s to t = 5 s and is not accelerating between t = 6 s and t = 7 s; that is, between t = 6 s 

and t = 7 s the ant’s velocity is constant.

Calculating Change in Velocity

Acceleration vs. time graphs tell us about an object’s velocity in the same way that velocity vs. time 

graphs tell us about an object’s displacement. The change in velocity in a given time interval is equal to

the area under the graph during that same time interval. Be careful: the area between the graph and the

t-axis gives the change in velocity, not the final velocity or average velocity over a given time period.

What is the ant’s change in velocity between t = 2 s and t = 5 s? Because the acceleration is constant 

during this time interval, the area between the graph and the t-axis is a rectangle of height 1 cm/s2 and 

length 3 s. 



The area of the shaded region, and consequently the change in velocity during this time interval, is 

1 cm/s2 · 3 s = 3 cm/s to the right. This doesn’t mean that the velocity at t = 5 s is 3 cm/s; it simply 

means that the velocity is 3 cm/s greater than it was at t = 2 s. Since we have not been given the 

velocity at t = 2 s, we can’t immediately say what the velocity is at t = 5 s.

Summary of Rules for Reading Graphs

You may have trouble recalling when to look for the slope and when to look for the area under the 

graph. Here are a couple handy rules of thumb:

1. The slope on a given graph is equivalent to the quantity we get by dividing the y-axis by the x-

axis. For instance, the y-axis of a position vs. time graph gives us displacement, and the x-axis 

gives us time. Displacement divided by time gives us velocity, which is what the slope of a 

position vs. time graph represents. 

2. The area under a given graph is equivalent to the quantity we get by multiplying the x-axis and 

the y-axis. For instance, the y-axis of an acceleration vs. time graph gives us acceleration, and 

the x-axis gives us time. Acceleration multiplied by time gives us the change in velocity, which 

is what the area between the graph and the x-axis represents.



We can summarize what we know about graphs in a table:

One-Dimensional Motion with Uniform Acceleration 

Many introductory physics problems can be simplified to the special case of uniform motion in one 

dimension with constant acceleration. That is, most problems will involve objects moving in a straight 

line whose acceleration doesn’t change over time. For such problems, there are five variables that are 

potentially relevant: the object’s position, x; the object’s initial velocity, v0 ; the object’s final velocity, 

v; the object’s acceleration, a; and the elapsed time, t. If you know any three of these variables, you can

solve for a fourth. Here are the five kinematic equations that you should memorize and hold dear to 

your heart:

x  =  x0  +  
1
2

(v  +  v0)t

v  =  v0  +  at

x  =  x0  +  v0 t  +  
1
2

at
2

x  =  x0  +  v t  −  
1
2

at
2

v2  = v0
2  +  2a (x  −  x0 )

The variable x0 represents the object’s position at t = 0. Often x0 = 0.



You’ll notice there are five equations, each of which contain four of the five variables we mentioned 

above. In the first equation, a is missing; in the second, x is missing; in the third, v is missing; in the 

fourth, v0 is missing; and in the fifth, t is missing. You’ll find that in any kinematics problem, you will 

know three of the five variables, you’ll have to solve for a fourth, and the fifth will play no role in the 

problem. That means you’ll have to choose the equation that doesn’t contain the variable that is 

irrelevant to the problem. 

Learning to Read Verbal Clues

Problems will often give you variables like t or x, and then give you verbal clues regarding velocity and

acceleration. You have to learn to translate such phrases into kinematics-equation-speak:

When They Say...                           They Mean...

“...starts from rest...”   v0 = 0

“...moves at a constant velocity...”   a = 0

“...comes to rest...”   v = 0

Free Fall

Very often, problems in kinematics will involve a body falling under the influence of gravity. You’ll 

find people throwing balls over their heads, at targets, and even off the Leaning Tower of Pisa. 

Gravitational motion is uniformly accelerated motion: the only acceleration involved is the constant 

pull of gravity, 9.8 m/s2 toward the center of the Earth. When dealing with this constant, called g, it is 

often convenient to round it off to 10 m/s2. Because up is positive and g acts downward, in free fall 

problems a = -g. The “-” sign means “down”.



Example

A student throws a ball up in the air with an initial velocity of 12 m/s and then catches it as it comes 

back down to him. What is the ball’s velocity when he catches it? How high does the ball travel? 

How long does it take the ball to reach its highest point?

Before we start writing down equations and plugging in numbers, we need to choose a 

coordinate system. This is usually not difficult, but it is vitally important. Let’s make the origin 

of the system the point where the ball is released from the student’s hand and begins its upward 

journey, and take the up direction to be positive and the down direction to be negative.

We could have chosen other coordinate systems—for instance, we could have made the origin 

the ground on which the student is standing—but our choice of coordinate system is convenient 

because in it, y0 = 0, so we won’t have to worry about plugging a value for y0 into our equation.

It’s usually possible, and a good idea, to choose a coordinate system that eliminates y0. 

Choosing the up direction as positive is simply more intuitive, and thus less likely to lead us 

astray. It’s generally wise also to choose your coordinate system so that more variables will be 

positive numbers than negative ones, simply because positive numbers are easier to deal with.

What is the ball’s velocity when he catches it?

We can determine the answer to this question without any math at all. We know the initial 

velocity, v0  = 12 m/s, and the acceleration due to gravity, a = -g = -10 m/s2, and we know that 

the displacement is y=0 since the ball’s final position is back in the student’s hand where it 

started. We need to know the ball’s final velocity, v, so we should look at the kinematic equation 

that leaves out time, t:



v2  = v0
2  +  2a (y  −  y0)

Because both y and y0 are zero, the equation comes out to v2 = v0
2. But don’t be hasty and give 

the answer as 12 m/s: remember that we devised our coordinate system in such a way that the 

down direction is negative, so the ball’s final velocity is –12 m/s.

How high does the ball travel?

We know that at the top of the ball’s trajectory its velocity is zero. That means that we know that

v0= 12 m/s, v = 0, and a = -g = -10 m/s2, and we need to solve for y:

v2  = v0
2  +  2a (y  −  y0)

y  = 
v2  −  v0

2

2 a

y  = 
(0  m/s)2  −  (12 m/s)2

(2)(−10  m/s2
)

y  = 
−144  m2

/s2

−20  m/s2

y  =  7.2 m

How long does it take the ball to reach its highest point?

Having solved for y at the highest point in the trajectory, we now know all four of the other 

variables related to this point, and can choose any one of the five equations to solve for t. Let’s 

choose the one that leaves out y: 

v  =  v0  +  a t

t  = 
v  −  v0

a

t  =  
0  m/s  − 12 m/s

−10 m/s2  =  1.2  s

Note that there are certain convenient points in the ball’s trajectory where we can extract a 

third variable that isn’t mentioned explicitly in the question: we know that y = 0 when the ball is

at the level of the student’s hand, and we know that v = 0 at the top of the ball’s trajectory.



Two-Dimensional Motion with Uniform Acceleration

If you’ve got the hang of 1-D motion, you should have no trouble at all with 2-D motion. The motion 

of any object moving in two dimensions can be broken into x- and y-components. Then it’s just a 

matter of solving two separate 1-D kinematic equations.

The most common problems of this kind involve projectile motion: the motion of an object that is shot, 

thrown, or in some other way launched into the air. Note that the motion or trajectory of a projectile is a

parabola.

If we break this motion into x- and y-components, the motion becomes easy to understand. In the y 

direction, the ball is thrown upward with an initial velocity of vy0 and experiences a constant downward 

acceleration of a = -g = –10 m/s2. This is exactly the kind of motion we examined in the previous 

section: if we ignore the x-component, the motion of a projectile is identical to the motion of an object 

thrown directly up in the air.

In the x direction, the ball is thrown forward with an initial velocity of vx0 and there is no acceleration 

acting in the x direction to change this velocity. We have a very simple situation where ax and vx is 

constant.



If you take the SAT II Physics test, it will not expect you to do much calculating in questions dealing 

with projectile motion. Most likely, it will ask about the relative velocity of the projectile at different 

points in its trajectory. We can calculate the x- and y-components separately and then combine them to 

find the velocity of the projectile at any given point:

v  =  √v x
2  +  v y

2

Because vx is constant, the speed will be greater or lesser depending on the magnitude of vy. To 

determine where the speed is least or greatest, we follow the same method as we would with the one-

dimensional example we had in the previous section. That means that the speed of the projectile in the 

figure above is at its greatest at position F, and at its least at position C. We also know that the speed is 

equal at position B and position D, and at position A and position E.

The key with two-dimensional motion is to remember that you are not dealing with one complex 

equation of motion, but rather with two simple equations.

Key Formulas

Average Speed average speed  =  
distance traveled
    time elapsed

 =  
d
Δ t

Average Velocity average velocity  = 
change in displacement
         time elapsed

 =  
Δ s
Δt

Average Acceleration average acceleration  = 
change in velocity
     time elapsed

 =  
Δ v
Δ t

One-Dimensional

Motion with Uniform

Acceleration

(The “Big 5” Equations)

x  =  x0  +  
1
2

(v  +  v0)t

v  =  v0  +  at

x  =  x0  +  v0 t  +  
1
2

at
2

x  =  x0  +  v t  −  
1
2

at
2

v2  = v0
2  +  2a (x  −  x0 )

Velocity of Two

-Dimensional Projectiles
v  =  √v x

2  +  v y
2



VOCABULARY

displacement

distance

velocity

acceleration

speed

instantaneous velocity

acceleration

projectile motion


